王功在采访中说:“这次试验突破以往太空制造中以丝材为主的材料体系,验证了新型太空制造材料及新的技术手段,大幅提高了在轨制造精度。空间立体光刻工艺相比于目前太空制造所普遍采用的熔融沉积工艺,最大的优势在于直接成形精度更高,并且可将材料由高分子材料扩展至陶瓷、金属、生物材料、月壤等纳米/亚微米粉末材料。”
此前,国际同行普遍认为该工艺在微重力环境下不太可能被使用,因为其主要原材料是液体,而液体在微重力环境中非常容易自由飘散。王功介绍称,此实验的难点就在于,需要攻克液体在失重环境下难以精确控制的问题。
他说:“在关键技术攻关过程中,团队创新采用一种具有剪切变稀特性的软物质材料,针对在轨环境特点,调整其流变性能,实现了在失重环境中陶瓷/金属软物质材料的微米级精密在轨制造。”
据介绍,王功团队的目标是在太空中建立工厂,以服务空间站建设运营。但目前仍有几大难点需要攻克,他说:
“在微重力环境下,一方面,航天员保持自身姿态和动作稳定是很困难的;另一方面,难以对材料进行精确控制。而太空中有限的空间和资源对制造设备和工艺提出的挑战是要做到:易操作、低功耗、小型化。另外由于航天员工作生活都在太空中相对狭小的密闭空间,整个制造过程不能产生任何有毒有害物质。”
太空制造的根本目的是提升人类在地外的活动和生存能力。太空制造未来发展可分为“小型零部件制造”“大型空间装置制造及在轨组装”“探测月球、火星等地外深空环境中更综合的制造活动”三个阶段。
王功指出,现在还处于第一阶段,大概只解锁了这个阶段10%的工作,还有大量的工作需要去做。