14:35 2020年04月10日
科技
缩短网址
0 01

据微信公众号“机器之心”报道,一篇有关课堂监控技术的论文近日刊登在《IEEE Transactions on Visualization and Computer Graphics》上。

在论文中,来自香港科技大学、哈尔滨工程大学等机构的研究者提出了一种名为 EmotionCues 的系统。该系统主要关注如何记录学生面部表情,并据此来分析学生在课堂上的情绪变化、注意力集中程度。


作者之一、香港科技大学计算机教授屈华民介绍说,这个系统

“为教师提供了一种更快速、更方便去衡量学生在课堂上参与度的方法。”

报道称,这项研究的初衷是希望依靠该系统去监控学生在课堂上的情绪反馈,判断学生在什么时候开始感到无聊,什么时候注意力更加集中,以此来提醒老师该如何改善课堂内容、提高授课质量。
报道中,研究团队在两间教室里对提出的系统进行了测试,一间教室是香港科技大学的学生,代表高校学生群体;另一间教室是日本某所幼儿园,代表低龄学生群体。

测试发现,这套视觉分析系统在检测那些“明显情绪”方面效果比较好,比如学习兴趣较为强烈时的愉悦感。但系统对于“愤怒”或者“悲伤”等表情的解读能力还是有所欠缺。学生们可能只是单纯地专注于课堂内容本身,仅仅因为深入思考而皱了一下眉头,却容易被系统解读为“愤怒”。

考虑到情绪识别可能没那么准确,研究者挑出了一些影响因素(如人脸大小、遮挡情况、图像分辨率、照明情况等),并在系统中对它们进行了视觉编码,以此判断学生们的情感状况。

这些影响因素可能在系统情绪分析中起到了比较关键的作用。研究者将这些因素整合到了系统分析流程之中,提供了更加丰富的交互功能来改进系统性能。

 

关键词
人工智能, 技术, 机器人
社区公约讨论